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The general principles and properties which have been deduced previously (Frank & Kasper,  1958) 
for the class of alloy structures wi th  t r iangula ted  coordination polyhedra  are applied in an analysis  
and classification of representat ive structures.  In  the main  the analysis  is wi th  regard to the na ture  
of layers and how they  rpay be stacked and wi th  regard to the na ture  of the major  skeletons. Many  
hypothet ica l  s tructures result ing from the analysis are listed and procedures are given for predict ing 
other s t ructure types.  The relationship between alloy structures and inert  gas hydra tes  is discussed. 

1. I n t r o d u c t i o n  

In Part  I (Frank & Kasper, 1958) we have considered 
in a general sense complex alloy structures that  are 
characterized by triangulated coordination shells. 
Topological and geometrical properties of such shells 
were discussed and justification was given for the 
prominence of four of them (with Z = 12, 14, 15 
and 16) in actual structures. Also, the principles 
governing the combination of these shells into com- 
plete structures were deduced. In particular, two 
features of this class of structures were stressed--the 
existence of a major skeleton and the planar or 
approximately planar layering of atoms. We now 
undertake an analysis and classification of individual 
structures in terms of these two features utilizing the 
general properties and the terminology which have 
been discussed and defined in Part  I. 

2. Layer ing  in  t r i a n g u l a t e d  she l l  s t r u c t u r e s  

The familiar crystal structures based on the close- 
packing of equal spheres (the infinite series of struc- 
tures of which f.c.c.* and h.c.p.t are the first two 
members) are often profitably regarded as assembled 
from layers all of which have the same triangular net 
pattern which is the closest packing of spheres in two 
dimensions. In this case there is a double choice in 
the stacking of each layer on the next. The choices 
may be designated A and V and any repeating sequence 
of A's and V's defines a member of this series of 
structures. These staekings generate just two kinds of 
coordination shell--the two non-triangulated 12-coor- 
dination shells. 

* Face-centered cubic. 
t Hexagonal close-packed. 

In analogy with this, it is profitable to consider 
what kinds of layers there are which will stack to- 
gether to form the structures with triangulated coor- 
dination shells. We have already demonstrated in 
Part  I that  layering is to be expected for these struc- 
tures and that  the primary layers (those in which 
atoms are in contact) are tessellations of hexagons, 
pentagons and triangles. I t  turns out, however, that  
only a small number of regular and semi-regular 
tessellations, together with certain systematic modifi- 
cations of these, comprise the layer patterns for a large 
majority of the triangulated shell structures. Thus, 
the analysis in terms of layers is quite valuable. 

2.1. Layers with trigonal symmetry 
In trigonal symmetry the familiar structures utilize 

the two regular tessellations of this symmetry, 36 and 
63 and just one of the semi-regular tessellations, 
3 .6 .3 .6  (Fig. 1). The numerical symbols used here 
are Schl~fli symbols (Cundy& Rollett, 1954), speci- 
fying the number and sequence of various regular 
polygons around each vertex. The first is the triangular 
net-- i ts  vertices are in two-dimensional close packing. 
The second is the hexagonal or honeycomb ne t - -  
a layer of graphite. The third corresponds to the 
three-way bamboo weave known as kagomd--a net 
of triangles and hexagons. This is a most important 
net of very wide-spread occurrence in crystal struc- 
tures. 

There are other semi-regular tessellations of 6-fold 
symmetry namely the two enantiomorphs of 3a.6; 
3 .4 .6 .4 ;  3.12a; and 4.6.12. The dodecagon rings in 
the last two appear to make them unsuitable layers 
for structures with only moderate sized coordination 
shells. In all of these five cases the two-dimensional 
unit cell is large, so that  if they occur at all it will 
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Fig. 1. Kagom6 net 3.6.3.6. 

only be in structures with a very large number of 
atoms per unit cell. There are, however, nets derived 
from these which can be used to construct structures 
of the type we are considering. An example of such 
a net, suggested by 3.4.6.4,  is given in 2.5 and Fig. 16. 

The simplest, and probably the commonest, of the 
kinds of structures which we are discussing is the class 
of closely related structures of composition A B  2 known 
as 'Laves phases'. We take (Fig. 2) (1) a kagom~ net 
of atoms B', and stack on it (2) a triangular net of 
atoms A', centering its hexagons, then (3) a triangular 
net of atoms B", centering half of its triangles (those 
in orientation A, let us say) followed (4) by a third 
triangular net of atoms A",  centering the remaining 
half of the kagom6 triangles (those in orientationV). 
Another kagom6 layer B ' "  stacked on to this pile, 
with its V triangles over the B" atoms and, therefore, 
over the A triangles of the first kagom6 net, makes a 
sandwich which is centrosymmetric with respect to 
the B" atoms. 

With regard to measurements, let the distance 
between nearest neighbors in the kagom~ net be 
taken as I. The distance between cquiv~len~ points 
in this net, and between atoms in each of the triangular 
nets is 2. The interplanar distance from kagom6 to 
kagom6 is I/(8/3), and the three triangular nets are 
respectively at 3/8, 4/8 and 5/8 of the distance be- 
tween these planes. Thus, collectively, these triangular 
nets make a single puckered close-packed sheet of 
atoms, sandwiched between kagom4 sheets. 

The second kagom~ net may be taken as the com- 
mencement of a similar sequence, or of an alternative 
sequence in which the B" layer is placed to centre the 
triangles of V orientation in the kagom~ net below it 

B' AT JUNCTIONS OF SOLID LINES, z =0  , C.N. =12 
h' • z=518 , C.N.=I6 

B" 0 Z = I / 2 , C . N = I 2  

A" 0 z=5 /8 ,  C.N.= 16 
B"' AT JUNCTIONS OF BROKEN LINES, z= I , C.N.=I2 

Fig. 2. In-filling of kagom6 nets (at Z = 0 and Z = 1) in 
staggered superposition, as observed in Laves phases. 

(and the symbols A and V are correspondingly inter- 
changed throughout the description). 

If the stacking first described, from kagom6 to 
kagom~, is called A, and the alternative stacking V, 
then a variety of similar structures are described by 
various sequences of A and V. 

The sequence of repeating A stackings makes a 
structure of cubic symmetry, with kagom6 nets in all 
four (111) orientations. Repeated V makes the same 
structure in twin orientation. This is the cubic Laves 
phase Cls, typified by MgCu s. The sequence A V, 
repeating, makes the hexagonal structure C14 , typified 
by MgZn 2. The sequence A A U V makes the hexagonal 
structure Ca6 , typified by MgNi r These are the three 
"Laves phases". Other sequences are lfl~e]y to be 
described as faulted versions of the other three. Their 
symmetry properties are defined by the A V sequence 
in just the same way as for the simple sphere-packing 
structures (Zhdanov, 1945; Frank, 1951). 

The measurements given above are idealized ones, 
from which there are small departures except in the 
case of the cubic structure. With these measurements 
every B' atom has 6B atoms at distance 1 and 6A 
atoms at distance ]/(11/8) = 1.173, making an icosa- 
hedral 12-coordination shell. Every A atom has 12B 
neighbors at ]/(11/8) and 4A neighbors at ]/(3/2)-- 
1-225 making the triangulated 16-coordination shell. 
These coordination numbers are independent of the 
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A V sequence, but the particular arrangement of A and 
B atoms in the icosahedral shells around the B' atoms 
(those in a kagom6 layer) is different for the A A and 
A V cases. 

The structures just described have further crystallo- 
graphic importance in representing the arrangement of 
cations in the spinel structure. They have the property 
that  they can interpenetrate with a simple sphere- 
packing lattice made of triangular nets of C atoms, 
with interatomic distance 1, stacked at levels 2/8 and 
6/8 of the distance between kagom~ planes. In a A 
stack as described above, one third of the atoms of the 
first C layer centres the V triangles of the first kagom~ 
plane. The second centres its A triangles. Each A stack 
of cations is associated with a V V stack of C atoms 
(oxygen ions). Then the A atoms fall in tetrahedral 
interstices and the B atoms fall in octahedral inter- 
stices of the close-packing of C atoms. 

• • 

~b 

. /  
0 Co Z = O  

0 Zn" Z = 0 

• Zn' Z = I /2 

Fig. 3. The s t ruc ture  of CaZn s. 

In the structure of CaZn 5 (Fig. 3) there are just two 
alternate layers, a kagom6 net of Zn' atoms, with 
unit distance between neighbors, and a triangular net 
of Zn" and Ca atoms, l/(4/3) between neighbors. Ca 
ions centre the kagom6 hexagons and have a trian- 
gulated coordination shell of 18 Zn and 2 Ca atoms. 
One Zn atom, Zn', has an icosahedral coordination 
shell of 8 Zn and 4 Ca. The other Zn atom, Zn", has 
a novel kind of 12-fold coordination with 3 Ca and 
9 Zn. The shell is triangulated but contains 3S 4 as 
well as 3S 6 and 6S 5 surface coordinations. 

A conceivable structure (Fig. 4), not known in 
isolation, could be derived from the previous one by 
splitting the Ca atom, with 20-fold coordination, into 
a pair of smaller atoms lying symmetrically on the 
hexagonal axis, each of which would have a somewhat 
asymmetrical triangulated 14-coordination shell. The 
coordination number of Zn" atoms would then be 
raised from 12 to 15 (the normal triangulated shell for 
z = ] 5 ) .  

This structure, though unknown in isolation, occurs 
in the /x-phase (e.g. FeTW6, D85), which can be suc- 

o z==/2, C.N.=15 
0Z=1/4 AND 5/4, C.N.'H 

ATOMS IN KAGOMI~ NETS HAVE 
C.N.=I2 

Fig. 4. In-fi l l ing of kagom~ nets  (at Z = 0 and  Z ~ 1) in 
direct  superposit ion,  as observed in ~u-phase. 

cinctly described as a succession of kagom~ planes, 
with the interspaces alternately filled as in a Laves 
phase and as in our hypothetical 'split calcium CaZn s 
structure'. The coordinations undergo no change and 
the structure, therefore, has 12-, 14-, 15- and 16- 
coordination shells, all triangulated. There is a con- 
ceivable extensive family of structures of this kind. 
A suitable short notation to describe it is obtained by 
using the symbols A and V for the Laves-type kagom~ 
stacking (accompanied by Laves-type in-filling of the 
space between them) in combination with 0 for a 
direct superposition of kagom~ layers (with 'split 
calcium CaZn 5' in-filling). In this notation A0, re-  
peating, defines the/x-phase and any other sequence of 
symbols A, V and 0 defines a conceivable structure. 
The proportion of 14- and 15-coordination shells in 
the structures rises with the proportion of 0-stackings, 
relative to A and V stackings incorporated. A list of 
all possible structures up to 6 kagom6 layers per repeat 
unit is given in Table 1. Only the one known example, 
# phase, is given for a 6 layer repeat. I t  should be 
apparent how the table could be extended to any 
desired extent. 

A further conceivable variation is that  a proportion 
of particularly large atoms, with 20-coordination 
shells, can be incorporated in place of pairs of 14- 
coordinated atoms, by local reversion to the normal 
CaZn~ structure. Examples of this are provided by 
ThMs, TheM17, where M = Fe, Co, or Ni and ThMn12 

33* 
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Table  1. Classification of triangulated shell alloy structures with three-fold symmetry  

No. of 
atoms Distribution of a~oms 

in for differenl Z 
Layer Space unit " - -  Average 

Formula Designation Example sequence group cell 12 14 15 16 Z 

1 A~B s 'Split CaZn 5' - -  0 P6/mmm 7 3 2 2 0 13-4 
2 AB~ Laves phase ClI MgZn 2 /~ V P6a/mmc 12 8 0 0 4 13.3 
3 AB~ Laves phase C15 MgCu 2 ]/~1 .Fd3m 24 16 0 0 8 13-3 

AsB n (Hypothetical) - -  A0~7 P3ml 19 11 2 2 4 13.4 
4 AB9 Laves phase C36 MgNi2 /~/~ V V .P6s/mmc 24 16 0 0 8 13.3 

A2B a (Hypothetical) -- A A A0 -- 25 15 2 2 6 13"4 
AsB 7 (Hypothetical) - -  /~ ~700 ~ 26 14 4 4 4 13.2 
A6B ~ (Hypothetical) - -  /~ 0 V 0 ~ 26 14 4 4 4 13- 2 

5 AB~ (Hypothetical) - -  /~/~/~/~ V P-3ml 30 20 0 0 10 13-3 
A12Bx9 (Hypothetical) -- L1 A V V0 - -  31 19 2 2 8 13-4 
A12B19 (Hypothetical) - -  /~/~ V0V ~ 31 19 2 2 8 13.4 
ATB 9 (Hypothetical) - -  /~AA00 - -  32 18 4 4 6 13-4 
ATB 9 (Hypothetical) -- AOAOA ~ 32 18 4 4 6 13-4 
A16Bl~ (Hypothetical) - -  A V000 - -  33 17 6 6 4 13.5 
AI~BI~ (Hypothetical) ~ /~ 0 ~7 00 - -  33 17 6 6 4 13.5 

6 A ~B~ /~-phase Fe~W 6 ]/~ 01 -~3m 13 7 2 2 2 13-2 

(Florio et al., 1956). T h M  s is i sos t ruc tu ra l  wi th  CaZns; 
ThgM17 is de r ived  f rom T h M  5 by  replac ing in a regular  
m a n n e r  one Th  a t o m  out  of th ree  by  a pa i r  of smal ler  
M a toms ;  and  Th5~ul~ b y  replac ing one Th  out  of 
two,  in  a h y p o t h e t i c a l  ThMns, s t ruc ture ,  by  a pa i r  of 
YIn a toms.  The  s t ruc tu re  of BaMg 9 (Goldish & Marsh,  
1955) provides  a n o t h e r  i l lus t ra t ion  of pa r t i a l  replace- 
m e n t  of large 20-coord ina ted  a toms  (in th is  case, Ba) 
by  pairs  of smal ler  14-coordina ted  a toms  (Mg atoms) .  
The  e x t e n t  of th is  r ep l acemen t  is 4 0 %  for BaMg 9. 
These examples  would  suggest  the  poss ibi l i ty  of struc- 
tures  wi th  even  h igher  ex ten t s  of subs t i t u t ion  of pairs  
of a toms  for the  large 20-coord ina ted  a tom and  perhaps  
the  a t t a i n a b i l i t y  of t he  s t ruc ture ,  des igna ted  0, where 
th is  k ind  of subs t i t u t i on  is complete .  

2"2. The case of  4-fold symmetry  

I n  four-fold  s y m m e t r y  we have  one regular  tessella- 
t ion,  t he  s imple square  net ,  and  one i m p o r t a n t  semi- 
regular  tessel la t ion,  t he  square- t r iangle  ne t  3 ~.4. 3 .4 ,  
shown in  :Fig. 5. This  ne t  provides  the  closest pack ing  
of equa l  spheres  in  a p lane  in which  the re  is 4-fold 
s y m m e t r y  and  eve ry  sphere  has  the  same e n v i r o n m e n t  
a p a r t  f rom or ien ta t ion .  E a c h  has  5 equ id i s t an t  
neighbors. 

W h e n  th is  ne t  is r o t a t e d  90 ° a b o u t  a 2-fold axis, 
t he  centres  of squares  coincide, and  the  over lapp ing  
squares  are a p p r o x i m a t e l y  in a n t i s y m m e t r i c  pos i t ion  
(ac tua l ly  r o t a t e d  30 ° ins tead  of 45°). A sequence of 
square- t r i ang le  layers  (of A1) in these  two or ien ta t ions  
wi th  i n t e rven ing  simple square  nets  (of Cu), center ing  
the i r  squares,  describes the  t e t r agona l  CuAl~ (C16) 
s t ruc ture .  E a c h  Cu a t o m  has  a t r i a n g u l a t e d  10- 
coord ina t ion  shell (8 A1, 2 Cu) and  each A1 a t r ian-  
gu la t ed  15-coordinat ion shell  (11 A1, 4 Cu). 

A n o t h e r  common  s t ruc tu re  wi th  four-fold s y m m e t r y  

Fig. 5. 33. 4.3.4 net. 

which  we can uti l ize as a s imple example  of the  w a y  
in which  l ayer  s tacking  produces  h igher  coord ina t ion  
s t ructures ,  is t h a t  of f l - tungs ten  (A-15).  We  use the  
ne t  (Fig. 6) wi th  two k inds  of ver tex ,  two  of 3~.62 
to  one of 3 .6  3 6. I f  i ts  hexagons  are regular  i t  has  a 
r ec tangu la r  un i t  cell wi th  axial  r a t io  (1/2) l/(3) : 1. I f  t he  
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Fig. 6. The ne t  for a layer in the  fl-W structure.  

shorter axis is stretched to 1 to make the cell square, 
and the net is rotated 90 ° about one of its normal 
2-fold rotation axes, in the centre of a hexagon, all 
the hexagon centres coincide. An alternate stacking 
of layers in these two orientations places hexagons 
antisymmetrically above each other, and at the same 
time places an atom approximately over the centre of 
each triangle. With these two layers at unit distance 
apart, a square net of atoms centering the hexagons, 
halfway between, completes the structure, which has 
cubic symmetry. Every atom possesses the best 
triangulated 14-coordination shell, though in some- 
what distorted shape because of the prior deformation 
from regular hexagons which was required to square 
the unit cell of the net. 

two-fold rotation-symmetry, which can be 'squared' 
with a much smaller distortion than in the foregoing 
case. This is shown in Fig. 7 and can be assembled 
from kagom6-patterned tiles having four hexagons 
and six triangles (outlined by heavy lines in Fig. 7). 
We shall call this important net 'kagom6-tiling'. 
(The same tiles can be assembled with two triangles 
each to make the true kagom6 pattern.) The smallest 
unit cell of the kagom6-tiling net is rhombic, with 
diagonals in the ration 3V(3 ) :5 = 1.04. A shear of 4% 
makes it square. Either of two unit cells is a con- 
venient one: one with its corners at the centres of 
four neighboring tiles, or one with its corners at the 
centres of short edges of tiles. After squaring the net, 
a rotation of 90 ° about the two-fold axis lying at the 
midpoint of a side of either cell (which is also the 
midpoint of a long edge of a 'tile') brings the one cell 
into superposition with the other. This operation 
superposes all the hexagons, essentially antisym- 
metrically. I t  also brings an atom approximately 
into the centre of each triangle. Two kagom6-tiling 
layers stacked above each other in this relationship 
fit very well together, and, like the simpler cases 
considered before, only require an interlayer of atoms 
centering the superposed hexagons to complete a 
well-coordinated structure. The pattern of this inter- 
layer of 14-coordinated atoms is just the square- 
triangle net which was utilized in CuA] 2. The struc- 
ture which results has tetragonal symmetry and is 
that  of e-phase, or of r-uranium. 

Fig.  7. I~agom6 tiling. 

There is a net of hexagons and triangles, possessing 

T 
SEQUENGE FAULT 

Fig. 8. A sequence fault in the 32 . 4.3.4 pattern. 



Fig. 9. 33 . 42 tessellation. 

COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. II 

2"3. Sequence faults in the (~-phase structure 
T h e  square-triangle net (Fig. 5) may  be seen as 

vertical zig-zag rows, cross-connected to each other 
in such a way that  successive vertical zig-zags are 
alternately displaced up and down along their length 
relative to each other. Using + for up and - for down, 
the sequence of vertical zig-zag rows can be designated 
I+ - I ,  repeating. Without  changing the coordination 
numbers or neighbor-neighbor distances we may intro- 
duce a sequence fault into this pat tern  by having two 
successive + operations or two successive - opera- 
tions in the sequence as in Fig. 8, representing the 
sequence + - + - - + _ +.  One row of vertices 
is thus converted from 32.4.3 .4  to 3a.4% The same 
conversion performed throughout generates the semi- 
regular tessellation of two-fold symmetry  which has 
all vertices of this type (Fig. 9). We should represent 
it by the sequence symbol [+l (or I-I) .  

488 

R P R R P R R 

Fig. 10. Dissection of kagom6 tiling into hexagon strips 
right-handed. 

triangle strips and denote by the letter R. Between 
every second pair of strips there is a line of triangle- 
pairs which we shall denote by the letter p. The 
relationship between centres is - when there is no 
interposed p-line and + when there is one. Fig. 11 

L L p L L 

I t  is a rather astonishing fact, which one would 
have had difficulty in foreseeing without guidance 
from the P-phase structure determined by Shoemaker, 
Shoemaker & Wilson (1957) tha t  the kagom~-tiling 
pat tern  also allows sequence faults with which it 
continues to fit together in good coordination with 
the faulted square-triangle net. 

In  order to describe these faults we first make an 
imaginary dissection of the un-faulted kagom6-tiling 
net into strips each of which contains the hexagons 
centered on a vertical zig-zag row of the square- 
triangle net. These are indicated by heavy lines in 
Fig. 10, which mark off staggered strips of hexagons 
and triangles which we shall call right-handed hexagon. 

• • 

P L 

Fig. I I. Dissection of kagom~ tiling into hexagon strips 
left -handed. 

shows the next overlying ka'gom6-tiling layer, simi- 
larly dissected. The difference is tha t  the hexagon- 
triangle strips are left-handed. We designate them by 
the letter L. The relationship between centres is + 
when there is no interposed p-line, and - when there 
is one. Fig. 12 shows these layers superposed, in the 
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Fig. 12. The sigma phase structure. 

0 

p R p D L p U U 

normal a-phase structure. Coordination requirements 
leave no choice in the relationship between strips. To 
provide an antisymmetric superposition of hexagons, 
L-strips must lie over R-strips, and conversely. Since 
the centre relationship in the succession LL is ÷,  and 
that  for RR is - ,  while an interposed p reverses the 
sign, p must lie over no-p, and conversely. We can 
use the notation just defined to give a symbolic 
description of the a-phase structure, with its layers 
analysed into strips, as follows: 

p L.+Lp L.Lp 

RpR" R p R ' .  

Fig. 13 shows a corresponding strip dissection of a 
layer of the P-phase structure. In addition to hexagon- 
triangle strips (L and R both occurring in the layer) 
it contains pentagon-triangle strips. These are of one 
type only but occur in upward and downward posi- 
tions, which we designate U and D. Whereas hexagon- 
triangle strips are denoted L and R according as their 
shoulders face forward on the left or right, pentagon- 
triangle strips are denoted U or D according as their 
shoulders face forward in the upward or downward 
direction. There are again lines of triangle-pairs be- 
tween every second pair of strips. The sequence is 

pU" I RpD'LpU" ! RpD 
÷ ÷  ÷ 

The centre relationship i s -  when R follows U, or 
D follows R, and ÷ when L follows D or U follows L, 
and interposition of p reverses the signs• L after U, 
U after R, R after D and D after L, with or without 
interposed p, are impossible sequences, not conforming 
at the joins. 

F. C. FRAI~K AND J. S. KASPEI~ 

o p L U p R O p 

Fig. 13. Dissection of layers of P-phase into pentagon and 
hexagon strips. 

Fig. 14 shows another layer stacked on top of this 
one to complete the P-phase structure. Coordination 
requirements uniquely determine its structure. For the 
pentagon-triangle strips we must have U over D or 
D over U for antisymmetric superposition of penta- 
gons. We must have L over R and R over L for anti- 
symmetric superposition of hexagons, as in a-phase. 
Also as in a-phase, we must have p over no-p, and 
no-p over p for conformity of ÷ or - in the centre 
relationships. The symbolic designation of the com- 
plete P-phase structure is: 

• Dp 

pU. 

L. UpR. Dp 
÷ ÷ -  - 

RpD. Lp U. 

L .U 
÷ 

RpD . 
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:Fig. 14. The P-phase  structure.  

As a result  of replacing hexagons by  pentagons, 
we have now changed the coordination of a number  
of atoms from 14 to 12 (icosahedral). At the same t ime 
certain atoms (shown in the figure) acquire 16-coor- 
dination, again in best- t r iangulated form. 

Though we have no example  in a known crystal  
structure,  there is no apparent  geometrical objection 
to having two adjacent  pentagon-tr iangle strips (with 
or without  interposed p), provided tha t  they  are 
a l ternate ly  U and D. The centre relat ionship will be + 
for DU and - for UD, with signs reversed when p is 
interposed. I t  is evident  tha t  this makes a satisfactory 
single layer, and one tr ial  will suffice to verify tha t  
there is a satisfactory conformity in the stacking of 
layers. We shall  make  this t r ial  after we have deduced 
the complete set of layer-structures permi t ted  by the 
sequence rules derived above. To summarize  these, 
the permi t ted  sequences are: 

LL, L U, DL, D U, all + ;  
RR, RD, UR, UD, a l l - ;  

and interposit ion of p interchanges + and - .  The 
stacking rules L over R, R over L, U over D, D over U 
make  the sequences conjugate to each other, as listed 
here, one pair  or other having interposed p, to satisfy 
the fur ther  stacking rule ÷ over d-~ - o w r  - ,  Th~ 
rule p over no-p, no-p over p is thus  a necessary one. 
Thus we mus t  have LpL above and  below R.R,  L.  U 
above and below RpD, LpU above and  below R.D, 
and so on. However, L . L .  U above RpRpD would be 
an inadmissible stacl~ing, since this would make  strips 
of unequal  width.  The rule tha t  p and no-p al ternate  
in  each sequence is, therefore, also a necessary one. 
W i t h  this rule i t  follows tha t :  

+ + or - - sandwich either U or D 
+ - or - + sandwich either L or R .  

From these rules i t  follows tha t  a n y  chosen sequence 
of symbols + and - defines just  two possible sequences 
of symbols L, R, U, D, p, which represent  layers which 
are conjugate to each other in the sense tha t  they  mus t  
al ternate  in the stack. Hence, any  chosen sequence of 
symbols + and  - defines one and  only one crystal  
s tructure in this general family.  

A short designation of each member  of the  fami ly  
is provided by a sequence of an even n u m b e r  of in- 
tegers, representing a l te rnate ly  the  number  of suc- 
cessive + signs, and the number  of successive - signs 
in a repeat ing uni t  of sequence. 

Some early members  of the infinite series of hypo- 
thet ical  well-coordinated structures so defined are set 
out symbolical ly  in Table 2. The first s t ructure (un- 
known) is i l lustrated in Fig. 15. I t  has as its interlayer,  
or secondary layer, the semi-regular tessellation 33 . 42 . 
This example provides the required verification tha t  
two successive pentagon-tr iangle strips do not produce 
an unforeseen difficulty in stacking. In  this  s tructure 
there are the four coordination polyhedra  with Z = 12, 
14, 15 and 16. All are in best t r iangula ted form, with 
no severe distortions. The occurrence of two contiguous 
16-coordinated atoms m a y  be considered a demeri t  of 
the structure, but  is also observed in P-phase.  Since 
a coordination shell is always contained ~dthin one or 
two strips (together with the conjugate overlying 
strips), the  i l lustrations of a-phase, P-phase,  and this 
structure, exhibi t  all the types of coordination tha t  
can occur in the whole fami ly  of structures. The com- 
position of all members  of the family,  in terms of 
proportions of atoms with various coordination num- 
bers, is in termediate  between tha t  of ~-phase and the 
structure of Fig. 15. 

0 

..! 
% L 

I c 

U p O U p O U p D 

. . . .  p D U p D U p D U 

Fig. 15. Hypothe t ica l  s t ructure  containing only pen tagon  strips. 
(See note  added in proof). 

Each hexagon-pentagon-tr iangle plane is, from the  
stacking rules, a symmet ry  plane for the structure in 
which it  lies. These structures are, therefore, in general  
monoclinic. A necessary condition for the s y m m e t r y  



NO. of 
sequences 

F .  C. F I ~ A ~ K  A ~ D  J .  S. K A S P E I ~  491 

Table  2. Structures based on 32. 4 . 3 . 4  tessellation and on sequence fau l t s  of  that tessellation 

No. of atoms 
Numerical Space Atoms per for coordination of Average 

symbols Letter sequence Name group unit cell 12 14 15 16 Z 

o o  o o  

(1, 1) 

(2, 2) 

(3, 2) 

(3, 3) 

(4, 2) 

(5, 1) 

(3,1,2,1)  

(2, l, 1, 2) 

(2,1,2,1)  

(4, 4) 

(121121) 

UpD.] 
+ ÷  

D. Up 

.RpR. 

L . UpR . Dp 
+ +  

RpD.Lp  U. 

L.  UpD. Lp I ÷ + + - -  
RpD. UpR. 

L.  UpD. LpU. Dp 
÷ ÷ + - - - - - -  

RpD. UpR. Dp U. 

L .  UpD . UpR . Dp 
÷ ÷  ÷ +  - - - - :  

RpD. UpD. Lp U. 

L.  UpD. UpD. Lp 
÷ + + ÷ + - -  

RpD. LpD. UpR. 

L.  UpD. LpL.  Lp 
÷ ÷ + - - ÷ - -  

RpD. UpR.RpR • 

L .  U p R  . R p R .  D p .  ] 
+ + - - +  

R v D  . ~ L  . L p  U . R 

L" UpR" RpD" Lp l 
÷ + - - + + - -  

RpD.LpL .  UpR. 1 

L.  UpD. UpR. Dp U" Dp 
+ + ÷ +  

RpD. UpD. i p  U. Dp U. 

- -  P m  26 14 4 4 4 13-2 

a P4/mnm 30 10 16 4 0 13.5 

P Pbnm 56 24 20 8 4 13.4 

- -  P m  56 24 20 8 4 13-4 

- -  Pbnm 82 38 24 12 8 13.4 

- -  P m  82 38 24 10 10 13 .4  

P m  82 38 24 10 10 13.4 

- -  P m  86 34 36 10 6 13 .5  

- -  P lnm 86 34 36 12 4 13-4 

- -  A m  86 34 36 12 4 13.4  

- -  Pbnm 108 52 28 14 14 13.4 

L. UpR .RpR .DpL .Lp I - -  Pbnm 116 44 
÷ + - - ÷  + - -  

J .RpD..Lp.L..Lip U..RpR " 

There are also 14 monoclinic structures for the 8 sequence group. 

52 16 4 13-4 

to  be h igher  is t h a t  the re  are equa l  number s  of + 
a n d  - signs in  t he  r epea t ing  un i t  of t he  sequence.  
This  cond i t ion  suffices to  ensure  an  essent ia l ly  rect-  
angu la r  base for t he  un i t  cell, b u t  two fu r the r  con- 
d i t ions  are needed  to  m a k e  the  s t ruc tu re  t r u l y  or tho-  
r h o m b i c :  (1) an  a n t i s y m m e t r i c  sequence of + a n d  
- signs; (2) opposi te  signs occur a t  separa t ions  of 1/2 
the  repea t ing  uni t .  A n t i s y m m e t r y  in the  + a n d  - 
sequence produces  s y m m e t r y  in  t he  po in t  a r r a y  i t  
represents ,  because t he  s t ruc tu re  ref lec t ion  across a 
p l ane  n o r m a l  to  t he  sequence d i rec t ion  changes  + 
in to  - .  A t  the  same t ime  the  associa ted  l e t t e r  se- 
quences  ref lect  in to  the i r  conjugates .  To p rove  th is  
resul t ,  we no te  t h a t  f rom the  sequence rules 

(1) Reversa l  of signs in a + - sequence leaves the  

L, t~, U, D symbols  in the  associa ted  l e t t e r  sequences  
unchanged ,  b u t  t ransposes  p. 

(2) Reversa l  of d i rec t ion  in a + - sequence reverses  
d i rec t ion  in  the  associa ted  l e t t e r  sequences,  a n d  in ter-  
changes  U a n d  D,  while  

(3) A ref lec t ion of the  s t ruc ture ,  in  a p lane  n o r m a l  
to  the  sequence di rect ion,  reverses d i rec t ion  and  in te r -  
changes  L a n d  R,  a n d  

(4) Tak ing  the  con juga te  l ayer  in te rchanges  L a n d  
R, U a n d  D, a n d  t ransposes  p. 

Hence  opera t ions  (1) and  (2) toge ther ,  or (3) a n d  
(4) toge ther ,  b o t h  h a v e  the  same effect,  r evers ing  
direct ion,  i n t e r chang ing  U and  D and  t r anspos ing  p .  

I t  follows t h a t  an  a n t i s y m m e t r y  in  t he  + -  
sequence genera tes  a gl ide-ref lect ion p lane  n o r m a l  t o  
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the  basal symmet ry  plane and to the sequence direc- 
tion. A second glide plane, parallel  to the sequence 
direction, results if the an t i symmetr ic  sign sequence 
is such tha t  opposite signs always occur at separations 
of 1/2 the repeat  unit .  For this plane, as for the one 
perpendicular  to the sequence direction, a structure 
reflection changes + into - .  Wi th  all these three 
elements of symmetry ,  the structure in general is 
or thorhombic with space group Pbnm. The first two 
examples  of this in the general fami ly  are (1, l) 
(a-phase, ac tual ly  te t ragonal ;  the only member  of the 
f ami ly  which can have this symmetry)  and (2, 2) 
(P-phase, orthorhombic).  The next  orthorhombic 
members  in ascending complexi ty are (3, 3) and (4, 4) 
and  (211,211). The fact tha t  the unknown early 
members  of the fami ly  are of re la t ively low symmetry ,  
coupled with the large numbers  of atoms per uni t  cell 
implies tha t  these structures could well exist without  
having  yet  been identified. 

2.4. Structures with sequence faults---general 
In  the previous section, we have l imited the discus- 

sion to those structures tha t  contain p r imary  layers 
of only one kind, the layers a l ternat ing in their  orien- 
tat ion,  to superimpose hexagons and pentagons anti- 
symmetr ical ly .  I t  is possible, however, to use two 
different kinds of layers, al ternately,  to achieve satis- 
factory tr iangulated-shell  structures, generally of low 
symmetry .  Some of these structures m a y  be obtained 
by  the methods of the previous section with a slight 
modification of the rules. We still utilize hexagon and 
pentagon strips, lines of tr iangle pairs (p) and  the 
same series of sequence faults  designated by  + and  
- signs. The strips are now no longer required to be of 
equal width and the previous rule tha t  p and no-p 
al ternate  in each sequence does not apply. The number  
of allowed structures then becomes ext remely  large 
for even a small  number  of + - sequences. We give 
in Table 3 examples of those possible structures where 
the strips are all of one kind, either of hexagons or o 

No. of 
sequences 

Table 3. Faulted sequence structures 

Only hexagon strips in layers and unequal widths of strips. All of space group P2 

No. of atoms for coordination of Numerical No. of atoms ^ 
symbol Letter sequence in unit cell ~12 14 ]5 16" 

OO 

3 

4 

5 

oo ~ 15 5 8 2 0 

~p 

(2, 1) L.L .Lp  ] 45 15 24 6 0 
+ + - -  

1 RpRpR. 

(2, 2) 60 20 8 0 
÷ +  

RpRpR. R. 

oo 8 o 

RpRpRpR. 

(4, 1) [ .L.L.L.L.Lp 75 25 40 lO 0 
+ + + + - -  

RpRpRpRpR. 

(3, 2) I L~.L~_.L~LpLp 75 25 40 10 0 

I R R Rv i: 

(2,1,1,1) ]~ .L~LpL~p 75 25 40 10 0 

[ Rp p  p; 

(1, 1) 

(2, 2) 

(3, 1) 

Pentagon strips only. Space group P2 

UpDp 26 14 

I UpD. U" Dp 52 28 
+ +  

D. UpDp U. 

D. UpD. U. 52 28 
+ + + - -  

UpD • UpDp 

4 4 4 

9 7 8 

9 7 8 
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pentagons alone. If both strips are allowed in one layer  
then  an inf in i ty  of structures can be produced for a 
given numerica l  symbol.  

In  this group of structures the symmet ry  is lower 
and  there is more var ia t ion from regular i ty  in the 
coordination polyhedra than  in the corresponding 
structures of the previous section. The existence of the 
two kinds of layers in #-phase,  however, does not 
permi t  these structures to be ruled out as possibilities, 
though they  m a y  be expected to be less l ikely to occur 
t h a n  the structures with only one kind of p r imary  
layer. 

2.5. Structures deducible from tiling patterns 
If  two kinds of p r imary  layers are permit ted,  i t  is 

possible to deduce m a n y  more structures than  are 
suggested by  the synthesis from hexagon and pentagon 
strips. We shall  outline a general procedure, with only 
a few examples,  for producing such structures. 

Fi rs t  we take cognizance of the fact tha t  a procedure 
exists for deducing the positions of atoms in neighbor- 
ing layers from a given p r imary  layer. This consists in 
placing atoms above the centers of triangles and above 
the centers of edges tha t  are shared by  hexagons or 
pentagons. Util izing only hexagons and  triangles we 
can then  proceed to consider various nets tha t  m a y  be 
produced by a var ie ty  of ti l ing patterns,  each of them 
being a port ion of the kagom6 net. Thus, a sat isfactory 
tile can always be made  by  selecting a strip one 
hexagon wide from the kagom6 net, the  length being 
any  desired number  of hexagons provided we te rmina te  
the strips with the edges of hexagons. The simplest  
case is with one hexagon as the t i l ing uni t  itself. Plac- 
ing atoms for the next  layer above the centers of edges 
we obtain a kagom~ net  for tha t  layer  and the result- 
ing structure is ' the split  CaZn 5' s tructure tha t  we have 
ah 'eady considered. For two hexagons in a strip we 
also encounter  a s tructure we have a l ready deduced, 

in the previous section, with the formulat ion ~- . 

Wi th  three or more hexagons per strip we obta in  new 
structures,  except when the length of strip is infinite. 
In  tha t  ease, with a shear of 13 % the net  can be made  
square and the structure produced is tha t  of /~-W. 
All these structures, except t ha t  with infinite strip 
length, contain coordinations of 12, 14 and  15. No 
15 coordination occurs in the fl-W structure. The 
number  of atoms with the different  coordinations is 
easily deduced fl'om the numbers  of hexagons in a 
strip. If  n is the number  of hexagons per strip, then  
the number  of atoms wi th  Z = 12 is 3 + 2 ( n - 1 ) ,  the 
number  with Z = 14 is 2 + 6 ( n - 1 ) ,  and the number  
with Z = 15 is 2 for all finite n. 

There are other uni t  tiles tha t  m a y  be selected from 
the kagom6 net  to produce sat isfactory hexagon- 
tr iangle nets from which t r iangulated shell structures 
could be made. We have a l ready considered the til ing 
which contains four hexagons and which occurs in 

o" 

0 z"O 
X Z • I12 

z " 1/4 $ 314  

Fig. 16. Hypothetical structure based on large hexagon tiling 
unit. The borders of the tiling units are indicated by heavy 
lines, solid lines for the layer at z ---- 0, and dotted lines for 
the layer at z--~ ~; the top part of the figure shows the 
former and the bottom part the latter. 

the  sigma phase. We shall  select only one addi t ional  
example,  shown in Fig. 16, where seven hexagons are 
contained in one tile which itself is a hexagon. The 
structure result ing from building the next  layer  and  

Fig. 17. A secondary layer for the hypothetical structure 
of Fig. 16. 
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centering the hexagons by major atoms is hexagonal 
and contains 52 atoms in the unit cell with the fol- 
lowing distribut,on of coordination numbers: 18 of 
Z12, 26 of Z14 and 8 of Z15. In Fig. 17 we show the 
net for the secondary layer which may be viewed as 
derived from the semi-regular tessellation 3 .4 .6 .4  
except that  each hexagon includes a point in its center. 
No examples of this structure are known. 

more than one way relative to another; it may super- 
pose directly above another or it may be staggered. 
Accordingly, we shall forego complete generality, 
limiting our discussion to the simplest possibilities 
and to the actual secondary layers in the structures 
that  have been observed or suggested by us. One 
simplifying feature, nonetheless, is that  only one kind 
of secondary layer occurs in a given structure. 

2.6. Secondary layers 
We have concentrated our attention on primary 

layers since they consist of atoms in contact and are 
most informative for an appreciation of the complete 
structure. We have noted in several instances, how- 
ever, the simplicity and regularity of the pattern in 
the secondary layers and it is worthwhile to give some 
systematic consideration to these layers because they 
offer a means of simple classification of all the various 
structure types. 

I t  appears in all cases we have treated that  the 
secondary layers consist of triangles and squares 
(or rectangles that  are almost square). This result is 
to be expected for triangulated shell structures from 
the considerations we have already given in Part  I 
leading to the conclusion that  layering, both primary 
and secondary, is a consequence for such structures. 
Reference to Figs. 4 and 5 of Part  I should demonstrate 
the additional point not expressed there that  the atoms 
in a secondary layer are arranged in triangles or squares 
(or slightly distorted squares) as a consequence of 
dealing with triangulated coordination shells. 

I t  would seem a systematic general approach to 
deduce the possible tessellations of triangles and 
squares and from these proceed to the primary layers 
by centering hexagons, pentagons and triangles about 
the points in the secondary layer. These possibilities 
are too numerous, however, to be explored in detail. 
Furthermore, one secondary layer can be oriented in 

3 ~ 42 .3  ~ 4.3.4.32 

Fig. 18. The four  kinds of points  in ne ts  cons t ruc ted  f rom 
square and tr iangle tessellations. 

There are four kinds of points in a secondary 
layer, illustrated in Fig. 18. We may consider 
as the simplest situations the four nets wherein each 
point is equivalent. We find these correspond to 
examples we have already given. The 44 net is that  for 
fl-W, 36 nets occur in the Laves and/~-phases, 49. 33 
applies to the hypothetical structure containing only 
pentagon strips in primary layers (Example 1, Table 2) 
and 4.3.4.32 is the secondary net of a-phase. I t  is 
difficult to decide on the order of simplicity in allowing 
combinations of two kinds of points in a net and we 
shall not pursue this point, but shall remark that  our 
detailed exploration of the variations of a-phase 
corresponds to finding combinations of 42.33 and 
4 .3 .4 .3  ~ in the nets of secondary layers. Fig. 16 
illustrates a combination of 4.3.4.3-" with 36 and the 
structure of Mg3-"(A1, Zn)49, discussed in section 4, is 
an example of the combination of 4".33 with 36 . I t  
should be apparent how to proceed to synthesize other 
structures than those mentioned here starting from 

Struc ture  

Laves  phases 

/ t -Phase 

'Spli t  CaZn 5 type '  

~-W 

a-Phase  

P -Phase  and  other  varia- 
t ions of a-phase (except 
(1) Table 2) Tables 2 and  3 

Hypo the t i ca l  pentagon-  
strip s t ruc ture  (1), Table 2 

Mg3~(A1, Zn)4 9 

Hypo the t i ca l  s t ructure ,  
Fig. 17 

Table 4. Seco~wlary layers in triangulated shell structures 
Nets  Comments  

3 6 

3 6 

4 . 3 . 4 . 3  2 

Combinat ions  of 
4 . 3 . 4 . 3  2 and  4 2 . 3 3 

4 2 . 3 3 

m 

Different  s taggering sequence for Cj4 and  C15 

Nets  of two kinds.  I n  one net ,  t r iangles of same 
size as in Laves  phases;  in other,  side of 
t r iangle is I/3/3 of t h a t  in Laves  phase 

Nets  superposed direct ly  over one ano the r  

Nets superposed directly above one another. 
Simple cubic lattice 
Nets superposed 
Nets superposed 

Nets superposed 

Combinat ions  of 
4 2 . 3 3 and  3 6 

Combinat ions  of 
3 6 and  4 . 3 . 4 . 3 "  

Nets  s taggered 

Nets  superposed 
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an allowable secondary net. In  this connection it must 
be pointed out tha t  it is possible for the points in a 
secondary layer to center triangles of a primary layer, 
as well as pentagons and hexagons. This applies when 
the secondary nets are staggered, as in the Laves 
phases. If the nets occur directly superposed, then only 
pentagons and hexagons are to be centered about the 
points. In  Table 4 there are listed in abbreviated 
fashion the kinds of nets in the secondary layers and 
how they are put  together in the various structures. 

3. The  m a j o r  skele tons  

While the layering analysis of triangulated shell struc- 
tures is perhaps the most informative as to details of 
structure, it is instructive and useful also to consider 
the major skeleton. Its relative simplicity and the ease 
of producing the full structure by inserting hexagons 
of atoms normal to all its bonds aids in remembering 
and reconstructing some of the more complex struc- 
tures. We shall discuss the various structures in the 
same order as in the discussion of layering. 

3.1. Trigonal symmetry 
Laves phases.---For these the skeletons are especially 

simple. The cubic C15 structure has the diamond struc- 
ture for its major skeleton. The hexagonal C14 struc- 
ture has the corresponding hexagonal or twin variant  
of the diamond arrangement. Jus t  as the C36 structure, 
typified by MgNi2, is the simplest faulted arrangement 
involving the layer sequences of both C14 and C15, 
its major skeleton is obtained by a corresponding 
alternation in the major skeletons of C~4 and C15. 
Similarly, the more highly faulted structures tha t  may  
be postulated may be derived from the corresponding 
twinned major skeleton. 

Hypothetical structure derived from CaZns.--The 
major skeleton is a simple one here, also. I t  consists of 
graphite-type sheets stacked directly over each other 
with strings of atoms threading each hexagon, normal 
to the sheets, a pair of atoms in a string (Z = 14) 
located midway between two sheets of atoms with 
Z =  15. 

#-Phase.--The major skeleton of /~-phase is com- 
pounded from the diamond structure and the skeletons 
of the split CaZn 5 structure, described above. Viewing 
the diamond structure with a trigonal axis vertical, 
insertion of a pair of atoms along each vertical bond 
and a graphite-like layer sandwiched by this pair 
produces the major skeleton of #-phase. Z is 14 for 
the inserted pair of atoms, 16 for the other atoms to 
which they are joined, and 15 for those in the graphite- 
like sheets. 

Variation of/~.phase.----There is no need for detailed 
description of the major skeletons of the numerous 
possible structures based on different A, V and 0 
sequences as discussed in the section on layering and 
indicated in Table 1. They all are compounded from 
the skeletons of the Laves phase and the split CaZn 5 

structure, the sequence and proportions being readily 
deducible from the layer symbolism of the structure. 

3.2. Four-fold symmetry 
A-15 or fl-W structures.--For this simple struc- 

ture the major skeleton contains the 6 atoms at  
~: (0, 1/2,1/4; ~-~) but  with connections between atoms 
only along the three (100} directions. There result 
then three independent systems of major rows along 
the (100) directions, each row bisecting a (100) face, 
with atoms at  1/4 and 3/4 of a unit-cell translation. 

a-Phase structure.--The borders of the kagom@ tiling 
pat tern  of Fig. 7 together with the row of atoms 
(4 per tile) normal to the plane represent the major 
skeleton of a-phase. Atoms at  the tile corners are 15- 
coordinated and those in tile edges and in the vertical 
rows are 14 coordinated. Alternate layers have the 
same kagom@ tiling but  are rotated 90 ° relative to 
one another. There is no connection between the layers 
in the structure of the skeleton. 

Fig. 19. The major skeleton of the P-phase structure. 

P-phase and other structures that are related to a-phase. 
- - F o r  P-phase and the numerous hypothetical struc- 
tures tha t  are related to a-phase, the major skeleton 
is considerably more complex than for a-phase, the 
complexity arising from the presence of pentagons in 
the primary layers. Thus, in none of these structures 
does there appear a tiling pat tern  within a primary 
layer as for a-phase; rather, there are zig-zag rows 
with different degrees of branching, and with connee- 
tions between successive primary layers. Fig. 19 illus- 
trates the skeleton for P-phase, depicting the connec- 
tions within one layer and showing by two unter- 
minated lines the bonds to atoms in a layer above 
and below the illustrated one. Also, in all cases other 
than a, the projected positions of atoms in the rows 
centering hexagons give rise to zig-zag rows wher- 
ever a hexagon strip occurs in the primary layer, 
rather than to simple tessellations. 

In  the simplest structure of this class, wherein the 
layers contain exclusively pentagons, the skeleton 
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Fig. 20. The major skeleton of the hypothetical structure 
with pentagon strips only. 
(See note added in proof). 

structure contains, of course, no rows of atoms normal 
to the layers and there is a maximum number of 
connections between layers. This is illustrated in 
Fig. 20, where again only one layer is shown, but 
bonds to atoms in adjacent layers are indicated by 
unterminated lines. 

3.3. Structures based on different tiling ~atterns 
The nature of the major skeletons here is considered 

in the general discussion in 3.4. The heavy lines in 
Fig. 16 outline the major skeleton of the hypothetical 
structure discussed in 2.5. 

3.4. The major skeleton in layered structures 
If a layer in a normally coordinated structure is a 

kagom@ tiling, in the general sense that  it may be 
dissected along ligands into areas of kagomd pattern, 
with a breach of the pattern at the dissections, then 
all the ligands along the dissection lines are major 
ligands. All other ligands are minor. This is readily 
established from the fact that  ligands within a 
kagom@-patterned area are shared by a hexagon and 
a triangle in the plane, while those along the dissection 
lines are shared either by two hexagons or two tri- 
angles. Thus the tile borders make up the major skele- 
ton lines within the layer. The only possible tiles are 
hexagons (not necessarily regular) with kagom6 
pattern hexagons in their corners. The other seeming 
possibilities (with included angles at the corner of 
60 ° , 240 ° or 300 ° ) are excluded either by making no 
breach in the kagomg pattern or making an impos- 
sible arrangement of major ligands (three in a plane, 
60 ° apart). Every tile corner is the meeting point of 
three tiles, the corresponding atom being 15-coor- 
dinated. Atoms along the straight edges of a tile are 
14-coordinated. 

When the layer pattern contains pentagons, and is, 
therefore, not a kagom~-tiling pattern, the ligands 
shared by hexagons and pentagons (or by two penta- 

gons) are major. The system of major ligands in the 
layer is now found to have single ended terminations, 
and corners which are not triple junctions, in addition 
to the connections characteristic of the tiling layers 
(see for example :Fig. 19). The single ended termina- 
tions correspond to Z15 atoms with major ligands 
leading out of the plane, one on each side: the corners 
which are not junctions correspond to Z16 atoms, 
again with one major ligand leading out of the plane 
on each side of the layer. I t  follows that  a non-tiling 
layer must be followed (after the appropriate secon- 
dary layer) by another non-tiling layer; and, con- 
versely, that  a tiling layer must be followed, after the 
secondary layer, by another tiling layer. In general, 
this will be a different tiling pattern from the first. 
In applying this rule it must be understood that  a 
single hexagon of the kagom@ pattern can count as 
a kagom@-patterned tile. 

The foregoing identifies all parts of the major skele- 
ton lying in the layer itself. In addition there are, of 
course, major ligands perpendicular to the layer, 
connecting secondary layer atoms, at the centre of 
every hexagon in the pattern. 

4. The  s tructure  of M~,32(A1 , Zn)49 

Recently, the crystal structure of a phase with the 
formula Mg32(A1 , Zn)49 has been determined by Berg- 
man, Waugh & Pauling (1957). This structure is 
another example, probably the most complex one to 
be reported, of the class of structures under discus- 
sion. There occur the four well-triangulated coordina- 
tion polyhedra in the following proportions: 98 with 
Z = 12 (icosahedral); 12 with Z = 14; 12 with Z = 
15; and 40 with Z = 16. The average coordination 
number is 13.4. 

Our analysis to this point does not lead us directly 
to the Mg32(A1, Zn)49 structure. On the other hand, 
according to our general principles, it should be pos- 
sible to analyze this structure, too, in terms of primary 
hexagon-pentagon-triangle layers and a major skeleton 
and we shall demonstrate this. :Nonetheless, this 
structure appears to be a special case. As described 
by the authors, it represents the result of maintaining 
icosahedral packing. Starting with an icosahedron, 
spheres are added in successive shells in a manner 
always to center the triangles of previous shells. A 
complex of 117 atoms can be built up, ~ th  72 atoms 
in the outermost shell lying on the faces of a cub- 
octahedron. The cuboctahedra can then be packed 
in a body-centered cubic lattice, with a sharing of 
the 72 atoms between neighboring complexes, giving 
162 atoms in a unit cube. In order to accomplish this 
arrangement there is a steady increase in the size of 
spheres for successive outer shells and it is found that 
the larger Mg atoms do occur in the outer shells. 

Plane or approximately plane layers of hexagon- 
pentagon-triangle arrangements occur parallel to 
(001). Fig. 21 shows the plane layer at z = 0, with the 
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Fig. 21. The plane layer  a t  z = 0 for the  Mg32 (A1, Zn)4 9 
s t ruc ture .  

positions at ±0.1 (approximately) centering the hexa- 
gons and  pentagons. I t  is a more complex arrange- 
ment  t han  we have encountered in the other structures 
bu t  a satisfactory one according to our rules for such 
layers. The same plane layer  occurs at  z = 1/2, bu t  
shifted by  the body-centering translat ion.  I t  is to be 
noted from Fig. 21 tha t  the secondary layer  of atoms 
at  z = 0.1 is a tessellation combining 49.39 and 36 
junctions.  

Fig. 22. The layer  a t  z = 0.2 in the  Mg32(A1, Zn)49 s t ructure .  
Solid circles are a t  z ±  0.1. 

At z = 0.2 and z = 0.3, approximately ,  the near ly  
plane layers are those shown in Fig. 22, the layer  a~ 
z = 0.3 being shifted by  half  a face diagonal transla- 
t ion relative to tha t  of z = 0.2. The same layers 
occur also at z = 0 . 7  and  z - - 0 - 8 .  The amount  of 
puckering is generally small  (+0.03 in z) but  one kind 
of a tom with z - - 0 . 1 5  needs to be considered as 
belonging to the layer  at z±0.2. We encounter  with 
this s tructure a modification of the principles of 
layering used so far. We have indicated tha t  the plane 
layer  at z = 0 is a satisfactory p r imary  layer and leads 
to secondary layers at  ±0.1 approximately.  Also, the 
puckered layers at ±0.2 a p p e a r  to be p r imary  and 

can be derived from the  layer  at  z = 0 by  rule of 
centering the  tr iangles and  the edges shared by  
hexagons or pentagons. The same layer  sequence, 
bu t  with a t ransla t ion of 1/2, 1/2, 0, occurs if we s tar t  
with a plane layer  at  z = 1/2 and  proceed to z = 0.4 
and  0.6 and  z - - 0 . 3  and z = 0-7. There seemingly 
results the juxtaposi t ion of two p r imary  layers a t  
z = 0 . 2  and  0.3, (also at  z - - 0 . 7  and  0.8), with no 
intervening secondary layer.  Nonetheless, because of 
the actual  puckering of these layers, sat isfactory 
t r iangula ted coordinations are achieved, a s i tuat ion 
tha t  would not  be realizable were the layers p lanar  
as in the cases considered up to this point. 

This structure demonstrates  how deviat ions from 
strict p lanar i ty  of p r imary  layers m a y  occur but  how 
the layer  analysis  still applies in a broad sense. I t  
also indicates the diff iculty of formulat ing all possible 
structures with t r iangula ted  shells, especially when 
deviations from p lanar i ty  are allowed. 

-0.I 8 i +- 0.~0"18 

+_ 18 

i 
Fig. 23. The ma jo r  skeleton of the  Mg32(A1, Zn)4 9 s t ruc ture .  

Major ligands in the principal  layers have been 
indicated by  heavy  lines in Figs. 21 and 22. The three- 
dimensional  major  skeleton is indicated in Fig. 23. 
I t  consists only of magnes ium atoms, and  contains 
all 64 of these in the  uni t  cell. The 16-coordinated 
atoms form pentagonal  dodecahedra,  in one orienta- 
t ion centered on the origin and in a second orientat ion 
around the body-centre.  (There are 20 Z16 atoms in 
each.) Only one set of these are shown in Fig. 23. 
6 edges of each dodecahedron l ink to edges of neigh- 
boring dodecahedra of the same set through pairs of 
15-coordinated atoms, with which they  make hexa- 
gons. These Z15 atoms are l inked in pairs by  pairs 
of Z14 atoms. There are thus 6 Z15 and 6 Z14 atoms 
per dodecahedron. The major  l igand connecting the 
Z14 pair  passes central ly through a hexagon associated 
with the second set of dodecahedra. (Shown with 
broken lines in Fig. 23.) There remain  eight major  
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ligands from each dodecahedron directed along <111} 
axes, by which it connects with neighboring dodeca- 
hedra of the second set. In this way the major skeleton 
is fully connected. 

5. The ¢~-manganese structure 

There are some structures, most notably that  of 
a-manganese, where some of the triangulated poly- 
hedra for Z -- 12, 14, 15, 16 occur along with other 
coordination polyhedra that  are not triangulated. 
Thus, in a-manganese 24 of the 58 atoms per unit cell 
have icosahedral coordination, 10 have the trian- 
gulated Z16 coordination, but the remaining 24 have 
13 neighbors forming a non-triangulated shell. Ac- 
cordingly, this structure is not a member of the class 
of structures under discussion and our principles and 
generalizations do not apply to it. For example, the 
a-manganese structure cannot be dissected into plane 
or approximately plane hexagon-pentagon-triangle 
layers and ambiguity results in attempting to classify 
the 13-coordinated atom as major or minor. One of us 
(Kasper, 1956) has incorrectly assumed previously 
that  it was permissible to regard the coordination for 
this atom as 14 by allowing an extra atom, at quite 
a distance from the central one, within the coordina- 
tion shell. This is clearly not permissible by the rules 
(2-1, Part I) we have established for deducing the 
coordination shells. The true coordination for this atom 
is 13, and the c~-manganese structure is not a represen- 
tative of the class of fully triangulated coordination 
shell structures. 

The major ligand concept can still be usefully 
applied. There is a normally coordinated Z16 atom at 
the origin, with 4 normally coordinated Z16 neighbors, 
connected in pairs through 6 pairs of abnormally 
coordinated atoms. This has the effect of isolating a 
small unit of diamond-like major skeleton. Such tetra- 
hedral units occur in one orientation at the origin and 
reverse orientation at the body centre. The positions 
so singled out are those which Laves et al. (1934) 
suggested were occupied by Mg atoms in the iso- 
structural alloy MglTAll~. 

6. The s tructures  of inert gas  hydrates  

It is a fascinating matter that there exists a strict 
correspondence between the structures of such 0hem- 
ically different substances as the gas hydrates and 
the intermetallie compounds of the class we have con- 
sidered here. Two cubic structures (Claussen, 1951; 
Pauling & Marsh, 1952; Stackelberg & Muller, I951) 
have been reported for the gas hydrates. In one 
structure, the water molecules form two kinds of cages 
which enclose the gas molecule--a pentagonal dodeca- 
hedron and a 14-face polyhedron (tetrakaidecahedron) 
in the respective proportions of 1 to 3. The centers of 
these cages are located at the points of the A-15 or 
fl-W structure. In the other gas hydrate structure 

there occurs again the pentagonal dodecahedron but 
the other cage is a 16-face polyhedron (hexakaideca- 
hedron). Their proportions are 2 to 1 respectively and 
their centers are the positions of the cubic Laves or 
C15 structure. These polyhedra are in fact the duals 
of the icosahedron, the Z = 14 and Z - - 1 6  trian- 
gulated shells we have dealt with in the alloy struc- 
tures. 

A convenient way of describing the hydrate struc- 
tures then is in terms of the analogous metal structures 
by focusing attention on the positions of the centers 
of water cages (or the gas molecule positions). In one 
case, these positions are given strictly by the fi-W 
structure. The water molecules are then centered in 
each of the tetrahedra of the fi-W structure, 46per 
unit cell, to give the complete hydrate structure ~i th 
46 water molecules, 2 smaller cages around the minor 
sites and 6 larger cages around the major sites. For 
the other structure we consider the C15 Laves struc- 
ture, for which there are 16 minor sites, 8 major sites 
and 136 tetrahedra. We place a water molecule in the 
center of each tetrahedron and associate a gas mole- 
cule with the major and minor sites to produce the 
complete hydrate structure. The 16-face cage results 
around the major sites and the dodecahedron around 
the minor sites. 

This relationship between the gas hydrate struc- 
tures and those we have been considering is a logically 
natural one, since the sphere-pacldngs with all tri- 
angulated coordination polyhedra are ipso facto those 
with all tetrahedral interstices, and further have the 
property that  each tetrahedral interstice is tetrahe- 
drally surrounded by four more, providing the right 
coordination of water-molecules for complete hydro- 
gen-bonding. I t  is worth noting that  whereas in the 
diamond-like ice structure obtainable by low tem- 
perature sublimation, the hydrogen bonds of neigh- 
boring molecules are always in trans configuration, 
in the ordinary hexagonal ice structure the configura- 
tion is cis for pairs along the hexad axis, and otherwise 
trans, the configuration is cis throughout for interstitial 
water molecules in any sphere-packing with all tri- 
angulated coordination. This follows immediately 
from the fact that  adjacent tetrahedra of spheres 
share triangular faces. 

Since the A-15 and C-15 structures are only two 
representatives of a very extensive class of metal 
structures, it is tempting to suggest possible hydrate 
structures that  are related to other metal structures. 
In the absence of thermodynamic criteria, there is no 
reason to preclude hydrate structures that  can be 
derived from the hexagonal Laves phase or C-14 
structure. This would contain the same water cages 
and in the same proportions, leading to identical 
hydration numbers as for the established cubic 
hydrate structure with a 0 of 17 •. More interesting 
would be hydrate structures derived from the complex 
metal structures, a-phase and /~-phase, for example. 
I t  is noteworthy that  the hydration number for small 
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molecules (the total number of H~0 molecules divided 
by the total number of cages) would not vary signi- 
ficantly for all the possible postulated structures. 
For those derived from a-phase and /~-phase, for 
instance, the hydration numbers (small molecules) 
would be 5.73 and 5.69. These numbers for the two 
established structures are 5.75 (12 A cell) and 5-67 
(17 A cell). The hydration numbers for large mole- 
cules (number of H20 molecules divided by number 
of large cages) would vary with structure type, of 
course; 8-6 for a-phase and 12.3 for/z-phase. 

7. General  r e m a r k s  

While we have treated many examples both of known 
and hypothetical structures, our treatment cannot be 
claimed to be all inclusive in either case. We believe, 
however, that  our principles and analysis are applic- 
able to any examples that  may have been omitted or 
which will be found of structures wherein the 4 normal 
coordinations only occur. We feel it is quite likely 
that  such examples will occur. 

There are questions of a more physical nature which 
we have not considered. One such question is that  
concerning ordering, or more precisely the association 
of different component elements with the different 
coordinations in an alloy. In some instances, as in the 
Laves phases, the situation is clear and well-known. 
A significant size difference is required for the Laves 
phase structure and the A atom (for the formulation 
ABe) is the larger atom in a two-component system. 
In other cases, as in the a-phases, there are varying 
degrees of order according to the combinations of 
elements and no direct correlation with usual atom 
radii can be made. 

A rule of fairly general validity is that  the Z14 and 
ZI5 sites (for which the coordination shells are 
respectively somewhat oblate and prolate, whereas 
Z12 and Z16 are more nearly spherical) are only 
occupied by transition metal atoms. The striking 
exception is magnesium. 

The extent to which packing considerations in 
contrast to other factors are determinative in choice 
of structure cannot be readily ascertained. I t  is quite 
usual to attribute the determinative role to 'electronic 

factors' for a-phase, for example. I t  is our position' 
however, that  the packing considerations are of 
primary importance and that  electronic factors may 
be operative in selecting between alternative structures 
that  satisfy the packing requirements. 

Note added in p r o o f . -  Mr. H. J. Beattie Jr. has re- 
cently pointed out to us an inaccuracy in our text. 
In section 2.3 we state that  the structure containing 
only pentagon-triangle strips is unknown and we de- 
signate it as 'hypothetical' in Figures 15 and 20. In 
point of fact, this structure is essentially that  of /x- 
phase, discussed in section 2.1. While the monoclinic 
description given in Table 2 (first entry) is correct in 
general, the most symmetrical topologically equivalent 
structure is rhombohedral (#-phase). Accordingly, the 
major skeleton of Figure 20 may be seen to fit, topo- 
logically, the description of the #-phase major skeleton 
given in section 3.1. 
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